Link Statistics of Dislocation Network during Strain Hardening

Hanfeng Zhai¹, Sh. Akhondzadeh¹, Wurong Jian¹, Ryan B. Sills², Nicolas Bertin³, & Wei Cai¹

1Department of Mechanical Engineering, Stanford University

2Department of Materials Science and Engineering, Rutgers University

3Lawrence Livermore National Laboratory

CompFest @ UC Berkeley Feb 22, 2025

Discrete Dislocation Dynamics (DDD)

Dislocations are line defects in crystals (figure from experiment)

Li et al., Nature Materials, 2023

Lack of connection between microstructure & strain-hardening!

Dislocation dynamics controls plasticity

Sills et al., PRL, 2018

Dislocation link lengths are exponentially distributed

Dislocation link length are exponentially distributed

Studies were done on Cu (FCC), which contains 12 slip systems.

Sills et al., PRL, 2018

What is a link?

What about link length distribution on slip systems?

Why double exponential?

Poisson process with growth reproduces distributions

Probability rate of cut $r_i = A \cdot \left(l_i / \overline{l} \right)$

Probability of split $p_{\text{split}} = r dt$

Links will grow $l/l = G(l/\bar{l})$

Summary

Discovered a new link length distribution from DDD simulations.

Single exponential for inactive slip systems.

Double exponential for active slip systems.

Proposed a new theory explaining the link length distribution.

Generalized Poisson process with growth functions.

Open source DDD code

https://opendis.github.io/OpenDiS/

